Les séminaires ont lieu en salle TLR, premier étage du bâtiment Le Chablais, sur le site du Bourget du Lac.

Prochain séminaire :

Jeudi 13 décembre 2018 à 14h Arthur Renaudineau (Laboratoire Painlevé, Lille),
Nombres de Betti d’une hypersurface algébrique réelle provenant d’un patchwork

Résumé : (Masquer les résumés)
L’inégalité de Smith-Thom borne la somme des nombres de Betti de la partie réelle d’une variété algébrique réelle par la somme des nombres de Betti de sa partie complexe. Dans cet exposé, nous expliquerons une preuve d’une conjecture d’Itenberg qui raffine cette borne pour une classe particulière d’hypersurfaces réelles projectives en termes de ses nombres de Hodge. Les hypersurfaces considérées proviennent de la construction du patchwork de Viro, qui est une méthode combinatoire puissante de construction d’hypersurfaces algébrique réelles. Pour démontrer la conjecture d’Itenberg, nous développons un analogue réel de l’homologie tropicale et, à l’aide d’une suite spectrale, nous la comparons à l’homologie tropicale définie par Itenberg, Katzarkov, Mikhalkin et Zharkov. L’homologie tropicale redonne les nombres de Hodge d’une variété projective complexe, et sa version réelle détermine les nombres de Betti de sa partie réelle. Comprendre plus en détail la suite spectrale apparaissant dans la preuve est une des clefs pour contrôler la topologie de l’hypersurface réelle provenant d’un patchwork.

Le séminaire de l’équipe Géométrie est sous la responsabilité de Michel Raibaut.
Options : Voir par date croissante . Masquer les résumés.
Autres années : 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, toutes ensemble.

Année 2019

Jeudi 07 mars 2019 à 14h Emmanuel Peyre (Institut Fourier, Grenoble),
À venir

Résumé : (Masquer les résumés)
À venir

Le séminaire de l’équipe Géométrie est sous la responsabilité de Michel Raibaut.
Options : Voir par date croissante . Masquer les résumés.
Autres années : 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, toutes ensemble.